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The rapid integration of artificial intelligence into modern computing presents an unprecedented
opportunity to advance programming languages and formal methods as foundational tools for building
robust, efficient, and interpretable solutions. My research lies at the intersection of Programming
Languages (PL) and Machine Learning (ML), with impactful applications spanning cybersecurity,
software engineering, and the life sciences. I have developed Scallop, a neurosymbolic programming
language, to bridge the gap between symbolic reasoning and neural learning. Scallop enables novel
solutions to challenges in domains such as computer vision, natural language processing, program
analysis, planning, clinical decision-making, and bioinformatics. My overarching goal is to design
languages and frameworks that are accessible, scalable, and applicable, empowering researchers and
practitioners to address increasingly complex problems with reliability, efficiency, and interpretability.

Specifically, I developed Scallop to address a fundamental challenge: combining the expressiveness of
symbolic programming with the scalability of machine learning models in a single, cohesive framework.
Scallop provides an intuitive language while ensuring effectiveness and usability for diverse applications.
This work has resulted in a series of publications on core language design (PLDI’23 and AAAI’24),
algorithms (NeurIPS’21 and NeurIPS’24), and applications (ACL’23, ICML’24 Spotlight, and two
submissions to ICLR’25). Scallop has facilitated collaborations with researchers at Penn Medicine, CMU,
and UC Berkeley. The research has been disseminated through summer school courses with hands-on labs
(SSFT 2022 and SSNP 2024) as well as tutorials in premier conferences (LOG 2022 and PLDI 2023). It
has been the focus of multiple funded grant proposals, including a dedicated NSF Medium grant titled
Scallop: A Neurosymbolic Programming Framework for Combining Logic with Deep Learning.

Building on these foundations, my research agenda focuses on advancing the neurosymbolic
infrastructure required for ML systems that are trustworthy, explainable, and efficient. I envision
developing programming models and tools that seamlessly integrate with state-of-the-art AI technologies,
such as large language models, to improve software quality and reliability. My work will continue to
address challenges in scalability and accessibility, laying the groundwork for general-purpose
neurosymbolic frameworks. I aim to democratize the use of advanced PL and ML techniques, making
them accessible to a broader audience of researchers and practitioners.

1. Research Contributions
Classical algorithms and deep learning embody two prevalent paradigms of modern programming.
Classical algorithms are well suited for exactly-defined tasks, such as sorting a list of numbers or finding
a shortest path in a graph. Deep learning, on the other hand, is well suited for tasks that are not tractable
or feasible to perform procedurally, such as detecting objects in an image or parsing natural language text.
These tasks are typically specified using a set of input-output training data, and solving them involves
learning the parameters of a deep neural network to fit the data using gradient-based methods.

While each paradigm is powerful in isolation, they are inherently complementary. Neurosymbolic
programming is an emerging paradigm that integrates symbolic knowledge and reasoning with neural



architectures, offering the promise of improved efficiency, interpretability, and generalizability over
neural or symbolic approaches alone. Despite substantial progress in individual neurosymbolic
applications, there remains a critical gap: the absence of a unified programming language and compiler
infrastructure to democratize the benefits of this paradigm and make it accessible to a broader audience.

To address this gap, my research contributions focus on advancing neurosymbolic programming by
tackling three key challenges: accessibility, scalability, and applicability. These principles have driven
the design and development of Scallop, a neurosymbolic programming language, resulting in a cohesive
body of work spanning core language design, algorithmic innovation, and application-driven research.

Accessibility. Designing programming languages that are both expressive and easy to use is essential for
broadening their adoption and impact. My work on Scallop focuses on creating a programming paradigm
that lowers the barriers for users to harness the power of neurosymbolic methods. Scallop integrates a
language, compiler, runtime, and supporting infrastructure, abstracting away the complexities of
probabilistic and differentiable reasoning required for end-to-end integration within modern machine
learning workflows. A core contribution, presented in PLDI’23, is Scallop’s introduction of a general
provenance framework, which allows developers to write programs as succinct logic rules while
utilizing configurable reasoning backends. This design facilitates discrete, probabilistic, and differentiable
reasoning, adapting to various neurosymbolic use cases. In subsequent work (AAAI’24), we expanded
Scallop with foreign interfaces and an extensive plugin library, connecting it to modern foundation
models. This enables structured reasoning with large language models and integrates Scallop with
external databases such as CodeQL, allowing systematic analysis of real-world programs.

A well-designed programming interface has broadened the impact of neurosymbolic applications and
established Scallop as a practical tool for researchers and practitioners. Scallop has been incorporated into
summer school courses, including the Summer School on Formal Techniques (2022) and the Summer
School of Neurosymbolic Programming (2024). These courses involve teaching Scallop’s principles and
practices, as well as hands-on labs to introduce students to this emerging paradigm. Additionally, Scallop
has been featured in tutorial sessions at conferences such as LOG’22 and PLDI’23. In recognition of its
impact, we were invited to author a book on Scallop for the Foundations and Trends in Programming
Languages monograph series (2024). Scallop’s development has also catalyzed inter-university
collaborations and led to multiple funded grant proposals, including a $1.4M NSF-funded project titled
Scallop: A Neurosymbolic Programming Framework for Combining Logic with Deep Learning.

Scalability. As a neurosymbolic programming language, Scallop must scale to handle real-life
applications with complex use cases, often requiring the processing of vast amounts of in-the-wild data. A
key challenge lies in the scalability of probabilistic and differentiable reasoning. Traditional exact
probabilistic reasoning over discrete distributions requires enumerating all possible worlds, which can
lead to exponential blow-ups. To address this, in NeurIPS’21, we introduced the top-k proofs
approximation algorithm, which relaxes and generalizes exact probabilistic reasoning. This approach
achieved orders-of-magnitude improvements over previous baselines like ProbLog and DeepProbLog. In
PLDI’23, we extended this work by integrating top-k proofs into Scallop’s provenance framework,
allowing users to configure their reasoning backend with a choice between exact and various approximate
reasoning algorithms. This unification enables users to balance reasoning granularity with scalability



based on their application needs. Further, in NeurIPS’24, we introduced ISED
(Infer-Sample-Estimate-Descend), an algorithm that leverages only input-output samples to estimate
gradients, improving both scalability and data efficiency.

In addition to algorithmic advancements, Scallop’s scalability can be further enhanced by hardware
acceleration. In a submission to PLDI’25, we developed Lobster, a GPU-based runtime for accelerating
inference within Scallop. Lobster systematically translates key components of relational algebra into
CUDA GPU kernels and implements a swappable runtime for maximum compatibility and efficiency. By
fully supporting Scallop’s provenance framework, Lobster seamlessly enables discrete, probabilistic, and
differentiable modes of reasoning on GPU hardware. While Lobster has been tested across a variety of
benchmarks—including neurosymbolic applications, probabilistic static analysis, and knowledge graph
traversal—a standout use case is its application to RNA folding. This task, which involves folding long
RNA sequences into secondary structures, traditionally requires significant computational resources. With
Lobster’s GPU runtime, Scallop achieved an average speed-up of 146x and a maximum speed-up of
500x compared to its CPU counterpart, reducing the runtime for inference on a complete RNA dataset
from 13 hours to just 6 minutes.

These algorithmic and hardware accelerations not only address the inherent challenges of scaling
neurosymbolic programming but also broaden Scallop’s impact across a wide range of applications,
positioning Scallop as a practical and powerful tool for real-world neurosymbolic computing.

Applicability. A programming language thrives when it demonstrates value through impactful use cases,
which is why application-driven research is central to my work with Scallop. In fact, Scallop’s design was
initially inspired by my earlier research on AI-assisted software analysis (ICLR’20 Spotlight, S&P’21,
and USENIX Security’24). While Scallop’s capabilities in natural language reasoning and vision have
been explored in foundational papers (PLDI’23 and AAAI’24), its applicability has expanded through
numerous collaborative projects across a variety of domains. Key collaborations include:

● Natural Language Reasoning: In partnership with Prof. Eric Xing at CMU, I applied Scallop to
long-dependency natural language reasoning tasks, fine-tuning language models and learning
templated logic rules for downstream applications. This work achieved state-of-the-art
performance on several benchmarks at the time and was published in ACL Findings’23.

● Clinical Decision-Making: In collaboration with Profs. Qi Long and Ravi Parikh at Penn
Medicine, we integrated Scallop into workflows for cancer mortality prediction. Scallop serves as
a backbone tabular database that bridges neural networks with interpretable explanation
generators, resulting in impactful outcomes including an ICML’24 Spotlight paper.

● Video Semantic Understanding: Collaborating with Facebook AI Research and Prof. Ser-Nam
Lim at UCF, we developed LASER, a weakly-supervised learning framework for video scene
graph generation. This work, currently under review (ICLR’25), demonstrates Scallop’s ability to
facilitate structured reasoning in video understanding tasks.

● Software Vulnerability Detection: In collaboration with Prof. Saikat Dutta at Cornell University,
I applied Scallop to whole-repository vulnerability detection. Scallop bridges CodeQL databases,
which encode user programs, and large language models for API specification inference and
trace-based contextual analysis. This work is currently under review (ICLR’25).



One of the most notable applications of Scallop is in bioinformatics, where I am collaborating with Prof.
Li Shen at Penn Medicine on the problem of RNA folding. This project represents Scallop’s first
application in bioinformatics, with significant implications for downstream tasks such as RNA splicing
and drug discovery. The task posed substantial scalability challenges due to the complexity of
probabilistic reasoning over long RNA sequences. To address this, I designed compiler optimizations and
language extensions tailored for bioinformatics workloads. Most notably, I utilized Lobster, the GPU
runtime for Scallop, achieving orders-of-magnitude speed-ups that reduced runtime from hours to
minutes. This collaboration not only showcases Scallop’s applicability but also highlights the synergistic
relationship between accessibility, scalability, and applicability: real-world applications drive the
development of the underlying language, making it progressively more expressive and efficient.

2. Future Research Directions
Building on my work with Scallop, I aim to advance neurosymbolic programming as a core enabler for
accessible, trustworthy, scalable, and generalizable AI systems. My future research will focus on three
interconnected themes: expanding the frontiers of neurosymbolic programming frameworks, developing
scalable and interpretable AI-powered tools for software quality, and exploring transformative
applications across interdisciplinary domains.

Neurosymbolic Programming Frameworks. One immediate direction for my future research is to
enhance the core capabilities of neurosymbolic programming frameworks. While Scallop has proven its
potential in seamlessly combining symbolic reasoning with neural learning, there remain significant
opportunities to improve expressiveness, scalability, and integration with emerging AI technologies. I
plan to extend Scallop’s expressiveness to support more complex reasoning paradigms, such as temporal
reasoning in robotics and real-time systems, or causal reasoning for scientific discovery and
decision-making tasks. Beyond Scallop, I aim to design novel language constructs that enable
neurosymbolic frameworks to integrate seamlessly into large-scale AI agent systems and world models,
bridging symbolic abstractions with the continuous nature of neural reasoning.

However, I believe the Datalog-based design of Scallop represents just one step forward. The future of
neurosymbolic programming will likely involve the evolution of new programming paradigms that adapt
to the demands of AI-driven computation. As such, I look forward to exploring entirely new programming
languages that cater to the diverse needs of neurosymbolic systems, whether by introducing richer
declarative semantics, incorporating probabilistic reasoning as a first-class citizen, or enabling adaptive
reasoning for dynamic, data-driven environments.

AI-Assisted Software Development. The cycle of modern software development involves a complex
pipeline of tasks, including programming, transpiling, debugging, vulnerability detection, and patching.
The emergence of large language models presents unprecedented opportunities to enhance the scalability
and usability of these processes, while also posing new reliability, safety, and interpretability challenges.
By leveraging neurosymbolic techniques, I aim to design scalable, trustworthy tools that address
challenges at every stage of software development.



Future iterations of Scallop could play a pivotal role in this vision by integrating with advanced program
representations such as intermediate-level graphs, which provide a structured and scalable abstraction for
analyzing and transforming programs. Additionally, Scallop’s neurosymbolic framework could enable
probabilistic reasoning to handle incomplete, noisy, or ambiguous software specifications, making it a
powerful tool for tackling real-world challenges in modern software systems. Ultimately, I envision
neurosymbolic methods as the foundation for a new generation of AI-assisted software engineering tools
that democratize high-quality, secure, and efficient software development.

Interdisciplinary Applications. Expanding the scope of neurosymbolic programming to address
interdisciplinary challenges is another key direction for my future research. Scallop has already shown its
potential in fields such as natural language understanding, clinical decision-making, and bioinformatics.
Building on these successes, I aim to explore how neurosymbolic frameworks can drive innovation in
other domains by serving as a bridge between symbolic reasoning and data-intensive neural methods.

In bioinformatics, for instance, I plan to extend the work on RNA folding by addressing broader
challenges such as RNA splicing, RNA modification, and drug discovering. By integrating neurosymbolic
reasoning with probabilistic modeling, I envision frameworks that can handle incomplete or noisy
biological data while offering interpretability and explainability. Another promising area is autonomous
systems, where neurosymbolic programming can enhance temporal and causal reasoning required for
robotics and high-level decision-making in dynamic environments. I plan to develop programming
frameworks that support reasoning about actions and outcomes over time, enabling robots and
autonomous agents to make informed decisions that align with high-level goals and constraints.

3. Conclusion
My research bridges the fields of programming languages and AI, focusing on advancing neurosymbolic
programming to address complex, real-world challenges. Through the development of Scallop, I have
contributed to making neurosymbolic programming more accessible, scalable, and applicable, enabling
state-of-the-art results in diverse domains. I have not only demonstrated the potential of neurosymbolic
methods but also inspired new programming language design, algorithmic innovation, and
interdisciplinary applications.

Looking ahead, my research will continue to push the boundaries of neurosymbolic programming by
addressing critical challenges in expressiveness, scalability, and integration with emerging AI
technologies. I am particularly excited about exploring new programming paradigms that adapt to the
evolving landscape of AI-driven computation, while extending the reach of neurosymbolic methods to
domains such as autonomous systems, scientific computing, and life sciences. By pursuing these
directions, I aim to make programming languages a cornerstone for the next generation of trustworthy,
interpretable, and generalizable AI systems.

Beyond research, I am deeply committed to fostering collaboration and mentoring the next generation of
computer scientists. I look forward to creating inclusive research environments, developing innovative
teaching strategies, and inspiring students to contribute to cutting-edge interdisciplinary research. By
combining foundational advancements with practical applications, my goal is to empower researchers and
practitioners across disciplines to solve the pressing challenges of our time.


