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ABSTRACT
Autonomous cyber-physical systems (CPSs) leverage AI for percep-

tion, planning, and control but face trust and safety certification

challenges due to inherent uncertainties. The neurosymbolic par-

adigm replaces stochastic layers with interpretable symbolic AI,

enabling determinism.While promising, challenges likemultisensor

fusion, adaptability, and verification remain. This paper introduces

NeuroStrata, a neurosymbolic framework to enhance the testing

and verification of autonomous CPS.We outline its key components,

present early results, and detail future plans.

CCS CONCEPTS
• Software and its engineering→ Software verification and
validation; • Computer systems organization→ Embedded
and cyber-physical systems; • Computing methodologies→
Machine learning; • Theory of computation → Formal languages
and automata theory.
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1 CONTEXT, MOTIVATION, AND AIMS
The integration of machine learning (ML) into CPS has driven inno-

vations in autonomous vehicles [43, 47, 48], delivery drones [2, 21,

52], and robotic surgeries [11, 33, 35].WhileML enhances autonomy

and intelligence, its uncertain and brittle nature, as witnessed in

softmax-based classifications and regression-based control, under-

mines traditional formal verification, necessitating novel solutions.
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Neurosymbolic approaches combine symbolic reasoning with neural

learning, addressing challenges in autonomous CPSs by enabling

co-training of neural components with symbolic logic through

probabilistic logic programming and differentiable reasoning [10,

29, 32, 34]. Advanced methods, such as program synthesis using

Domain-Specific Languages (DSLs), demonstrate promise by sup-

porting both deterministic and probabilistic programs [5, 18, 36].

However, significant bottlenecks persist, including unseen data in

real-world deployments [19], multi-sensor fusion challenges [42],

and the lack of neural component verification. Determinism at the
decision level of perception and mission planning is also missing,

which can enable the applicability of decades-long formal verifi-

cation and testing techniques. Ensuring system-level safety and

liveness requires systematic co-design of perception, planning, and

control — a critical aspect missing in current methods.

This paper summarizes state-of-the-art neurosymbolic paradigms,

using autonomous driving as a case study to highlight gaps in

adaptability to unseen environments, multi-sensor complexity, sys-

tematic validation of neural components, and determinism at the
decision level, critical for reliable autonomous CPS.

To address these issues, we put forward NeuroStrata — a neu-

rosymbolic framework for designing and assuring autonomous

CPSs. Our vision integrates neurosymbolic distillation and corner-

case test generation using LLMs to enable data-driven specification

mining, top-down synthesis of symbolic and neurosymbolic com-

ponents, and runtime bottom-up adaptation via program induction.

This approach evolves symbolic programs dynamically for decision-

making in perception and planning/control modules. Building on

prior work, we aim to transform the testability and verifiability of

autonomous CPSs through the neurosymbolic paradigm.

2 MOTIVATING SYSTEM AND THE
STATE-OF-THE-ART

State-of-the-art autonomous CPSs, such as autonomous driving

systems (ADS), are typically built on middleware frameworks like

Robot Operating System (ROS) with proprietary extensions (e.g.,

Baidu’s CyberRT) to reduce message latency [16, 30, 31, 37, 51]. As

shown in Figure 1, these systems integrate perception, prediction,

planning, and control modules. The perception module processes

multi-modal sensor data (e.g., LiDAR, cameras, IMU) for obstacle

detection, traffic light recognition, and localization. The prediction

module forecasts dynamic object trajectories, while the planning
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Figure 1: Motivating system: an industrial-strength software stack for autonomous driving [14].

module computes the ego vehicle’s trajectory. The control module

generates actuation commands, such as steering and braking. AI

components are pervasive across these modules, enabling object

detection, trajectory prediction, and real-time control.

Recent advancements in verifying machine learning models and

testing learning-enabled CPS have utilized methods like NNV star

sets [46], Sherlock [17], Reluplex [27], and Branch-and-Bound [7].

While promising, these methods often fall short in providing com-

prehensive safety and liveness guarantees, particularly when deal-

ing with the complexity and scale of the real-world, multi-modal

CPS as shown in the motivating system above. System-level test-

ing [13, 28, 44] and robustness analyses [8, 12, 45] offer progress

but still rely on probabilistic methods to assure probabilistic sys-

tems [4, 9], which can weaken the guarantees [3].

In parallel, neurosymbolic paradigms aim to combine neural and

symbolic approaches — either through differentiable logic program-

ming to produce differentiable yet deterministic outputs [29, 38] or

through program induction to synthesize deterministic programs by

observing limited input-output pairs [5, 18, 36]. However, they face

notable limitations. The differentiable logic programming paradigm

struggles with hard-coded mappings between neural component

outputs and logic program inputs, as well as the complexity of

implementing differentiable logic programming capabilities. These

constraints limit its ability to support multi-modal sensors and

the sophisticated logics required for autonomous systems, which

demand more automated and expressive guidance. Similarly, the

program induction paradigm relies on Domain-Specific Languages

(DSLs) for guidance, which are often hard-coded and lack the flex-

ibility needed for multi-modal sensor integration and advanced

reasoning [5, 18, 36]. Furthermore, program induction may not be

sufficient to replace all pure AI components in such systems.

Recent work onmultimodal neurosymbolic systems integrates visual
and auditory signals but relies on simplistic symbolic rules, unsuit-

able for the diverse sensor modalities of autonomous CPS, such as

LiDARs, radars, and cameras [24]. A Neural State Machine (NSM)

approach combines vision and language reasoning but suffers from

scalability issues, manual scene graph construction, and limited

interpretability due to missing source code [26]. These limitations

underscore the need for refined co-design to meet the stringent

requirements of autonomous CPS.

The above limitations emphasize the pressing need for deterministic
testing and verification approaches in autonomous CPS, particularly

in safety-critical domains like autonomous driving. For instance,

perception modules in autonomous vehicles, which rely on uncer-

tain or stochastic processes such as (Bayesian) neural networks

for object detection, often fail in “long tail” scenarios where the

inputs deviate from training data (covariate shift). Predictable and

deterministic approaches, incorporating reasoning layers, can adapt

to such unseen scenarios by leveraging symbolic logic to ensure

robust decision-making and mitigate failures caused by stochastic

uncertainties. This adaptability is crucial for guaranteeing safety

and reliability across perception, prediction, and planning modules

in dynamic and complex real-world environments [39, 40, 50].

3 NEUROSTRATA: OUR VISION FOR
HIERARCHICAL NEUROSYMBOLIC
FRAMEWORK FOR AUTONOMOUS SYSTEMS

To address the challenges of designing, testing, and verifying au-

tonomous CPS, we propose a new neurosymbolic framework,
NeuroStrata, tailored to the unique requirements of such systems.

As shown in Figure 2, NeuroStrata combines neural adaptability

with symbolic reasoning to enforce formal specifications across hier-

archical DSLs that capture underlying safety and liveness properties.

The framework structures Perception and Planning & Control capa-
bilities into high-level (symbolic-only) and middle- and low-level

(neurosymbolic) modules. It ensures runtime reliability and adapta-

tion via a two-phase process: top-down synthesis, propagating sym-

bolic specifications to neurosymbolic modules, and bottom-up adap-
tation, where neurosymbolic outputs refine symbolic programs.

Modules. At design time, Specification Mining, built on neurosym-

bolic distillation [1, 6, 41], extracts formal safety and liveness speci-

fications from training datasets. To cover more diverse safety and

liveness violations and out-of-distribution scenarios beyond exist-

ing training data, we leverage recent work using large language

models to analyze multi-modal sensor data [15, 51], such as front-

facing cameras in vehicles, to generate additional real-world crashes

and unusual cases from various angles. These specifications are

propagated hierarchically across the system. In the perception stack,

a high-level Scene Graph encodes semantic relationships and in-

teractions between objects (e.g., “pedestrian crossing road”), rep-

resented as differentiable, adaptable programs that can be verified

using formal tools like theorem provers. The middle-level Semantic
Map encodes spatial and semantic information such as road layouts

and drivable areas, ensuring consistency with the scene graph via

symbolic rules. The low-level Sensor Fusion and Signal Processing
integrates multi-modal sensor data (e.g., LiDAR, cameras, GPS)

while enforcing constraints on accuracy and consistency, leverag-

ing neurosymbolic reasoning for fusion and processing. Similarly,

the planning and control stack follows a hierarchical structure. The
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Figure 2: Proposed Vision for NeuroStrata: Hierarchical Neurosymbolic Programming for Autonomous CPS

high-level Global/Mission Planner synthesizes deterministic pro-

grams to achieve overall system objectives, verified with formal

methods such as theorem proving. The middle-level Local Plan-
ner generates short-term trajectories that align with global plans

while adapting to local changes, guided by symbolic reasoning.

The low-level Actuation Control converts trajectories into control

commands (e.g., steering angle, throttle) and ensures compliance

with constraints using runtime verification techniques.

Specifications. For perception, high-level specifications govern
system-wide context awareness, such as ensuring that pedestrians

and vehicles do not spatially overlap in the scene graph or that all

objects adhere to semantic relationships. Middle-level specifications

enforce localized consistency, such as aligning lane boundaries with

the semantic map and ensuring that detected objects are positioned

correctly within the road layout. Low-level specifications address

operational constraints, such as maintaining sensor fusion accuracy

within a 0.1-meter error margin and ensuring consistent integra-

tion of multi-modal sensor data. For planning/control, high-level
specifications ensure system-wide safety and mission compliance,

such as requiring the vehicle to remain within designated route

bounds throughout its journey. Middle-level specifications enforce

trajectory-level constraints, such as avoiding obstacles within a 2-

meter radius or maintaining smooth transitions between trajectory

points. Low-level specifications govern detailed actuation control,

such as keeping the steering angle within physical limits and en-

suring the stability of throttle and braking in response to control

inputs. These hierarchical specifications for perception and plan-

ning/control ensure an integrated and reliable system design.

Adaptation. During runtime, NeuroStrata dynamically adapts its

perception and planning modules to real-time data while main-

taining formal specification compliance. For perception, sensor

data flows upward through the hierarchy, where outputs from

the low-level sensor fusion are validated against middle-level se-

mantic map constraints, and updates propagate to the high-level

scene graph. It evolves dynamically using differentiable program

induction, compacting, and adapting specifications as needed. For

planning and control, high-level mission planners adjust strategies

based on changing conditions, while differentiable and adaptable

control programs refine global plans and compact themselves in

response to system data. Middle- and low-level components, such

as local planners and actuation control, remain guided by symbolic

reasoning to ensure safety and alignment with global objectives.

This integration enables simultaneously adaptable and formally

validated behavior throughout the system.

Guarantees. NeuroStrata ensures reliability through a hybrid vali-

dation framework. High-level deterministic programs, such as scene

graphs and mission planners, are validated using formal verifica-

tion tools like model checking and theorem proving. Middle- and

low-level neurosymbolic components, such as semantic maps and

sensor fusion, are guided by symbolic constraints and validated

using white-box testing, runtime monitors, and error propagation

analysis (e.g., approximate reachability verification [20] and con-

formance checking [23]). Together, this framework bridges the

gap between deterministic high-level programs and adaptive, data-

driven neuro-components, thus providing formal guarantees across

all three levels of the hierarchy.

4 EARLY RESULTS AND FUTURE PLAN
We conducted a preliminary case study to investigate a key Re-
searchQuestion (RQ): “can neurosymbolic reasoning complement

neural-network training to align with underlying specifications?”.
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♢

Video Taken From an Ego-Centric Vehicle
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Figure 3: Aligning STSG with natural language description
via temporal logic specifications.

We also outline our future plans, along with the potential challenges

and proposed solutions.

4.1 Assessing neurosymbolic reasoning to align
neural network training with specifications

In this study, we investigate the capability of differentiable neu-

rosymbolic reasoning to align perceptual neural networks with

specifications. We explore the application of a high-level visual

perception system trained by aligning its output with specifica-

tions. In this application, the goal is to infer spatio-temporal scene

graphs (STSG) from videos (e.g., ones taken by ego-centric cameras),

where the scene graphs must align with a given spatio-temporal

specification. Figure 3 depicts a specification for a traffic scene

which is described in natural language but then formalized into

a temporal logic formula. Notice that the specification consists of

logical symbols like exists (∃), and (∧), not (¬), and finally (^). A
neurosymbolic approach to solving this task comprises of a neural

model for STSG extraction and a differentiable symbolic component

for aligning the predicted STSG with the given specification. Being

differentiable, the loss computed from the alignment process can be

used to supervise the neural model. We evaluated our work on three

datasets: OpenPVSG [49], 20BN-Something-Something [22], and

MUGEN [25], each with diverse temporal properties. Our approach

outperforms current baselines on downstream tasks while offering

explainability
1
. This specification alignment provides high confi-

dence in our top-down synthesis approach and in guiding neural

training with our specifications.

1
Reference to the full report was anonymized for the review process.

4.2 Future Research Plan
To advance NeuroStrata, we propose a six-step future plan with

concrete steps to address challenges at each stage.

First, generating diverse training datasets will leverage recent ad-
vancements in model-based testing that utilize LLMs to analyze

multi-modal sensor data [15, 51]. The multi-faceted challenge lies

in ensuring the generated datasets are diverse, representative of

real-world scenarios, and capable of addressing edge cases. Solu-

tions can be tailored around prior work by accessing diverse sensor

datasets and logs, leveraging advanced multi-modal LLMs, and inte-

grating domain-specific constraints with iterative refinement based

on industrial partner feedback.

Second, designing suitable DSLs is essential for capturing hierarchi-

cal and semantically rich specifications. These DSLs enable experts

to encode operational constraints for sensor fusion, signal process-

ing, and physical actuation control. Challenges include ensuring

the DSLs are intuitive for domain experts while expressive enough

to handle complex requirements. Solutions involve co-designing

DSLs with autonomy and robotics specialists, developing language

automation, and designing usable visual interfaces. By providing

a bridge between formal methods and practical application, these

DSLs empower experts to play an active role in system design.

Third, developing a specification mining module based on neurosym-

bolic distillation will extract formal safety and liveness specifica-

tions from training datasets and LLM interactions. Aligning mined

specifications with real-world requirements and handling noisy/hal-

lucinated data are key challenges. Hybrid approaches that combine

symbolic reasoning with neural embeddings, as well as active learn-

ing techniques, can iteratively refine the mined specifications to

ensure accuracy and physical grounding.

Fourth, for design-time synthesis and verification, we will enforce

multi-level specifications for perception and planning/control mod-

ules, leveraging the hierarchical structure defined in our DSL. Mod-

ular architectures will enable scalable top-down synthesis of sym-

bolic and neurosymbolic components, while formal verification

ensures compliance with specifications. Parallelized processes and

adaptive abstraction techniques will address scalability challenges,

ensuring robustness across diverse scenarios and high-dimensional

inputs.

Fifth, for runtime adaptation and validation, we will develop mech-

anisms to dynamically refine symbolic programs for real-world

changes while ensuring specification compliance. Inspired by pro-

gram induction approaches like DreamCoder [18], NeuroStrata

will iteratively refine symbolic representations using real-time data.

Challenges include maintaining computational efficiency and real-

time guarantees. To address these, we will optimize runtime valida-

tors, integrate lightweight symbolic reasoning for faster adaptation,

and implement efficient runtime verification to ensure reliability

and compliance with minimal overhead. These advancements will

enable NeuroStrata to adapt to dynamic environments and evolv-

ing operational conditions.

Finally, for industrial deployment, NeuroStrata will be applied to

autonomous driving systems, delivery drones, cargo drones, and

passenger aircraft — as facilitated by our partners. Key challenges

include seamless integration into existing systems, adherence to

stringent safety standards, and building trust among stakeholders.
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Solutions include close collaborative projects, iterative deployment

in increasingly open environments, and the creation of comprehen-

sive documentation and training programs to facilitate adoption.

5 CONCLUSION
This paper explores the potential and challenges of neurosymbolic

paradigms for designing, testing, and verifying autonomous CPS.

We propose NeuroStrata, a framework enabling top-down synthe-

sis of symbolic and neurosymbolic components for perception and

planning/control, and bottom-up adaptation of symbolic programs

for real-time decisions. Early results validate neural alignment with

specifications. We outline challenges and solutions for implement-

ing NeuroStrata, aiming to bridge theoretical advancements and

practical applications, transforming autonomous CPS testing and

verification in real-world scenarios.
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